Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The ocean carbon reservoir controls atmospheric carbon dioxide (CO2) on millennial timescales. Radiocarbon (14C) anomalies in eastern North Pacific sediments suggest a significant release of geologic14C‐free carbon at the end of the last ice age but without evidence of ocean acidification. Using inverse carbon cycle modeling optimized with reconstructed atmospheric CO2and14C/C, we develop first‐order constraints on geologic carbon and alkalinity release over the last 17.5 thousand years. We construct scenarios allowing the release of 850–2,400 Pg C, with a maximum release rate of 1.3 Pg C yr−1, all of which require an approximate equimolar alkalinity release. These neutralized carbon addition scenarios have minimal impacts on the simulated marine carbon cycle and atmospheric CO2, thereby demonstrating safe and effective ocean carbon storage. This deglacial phenomenon could serve as a natural analog to the successful implementation of gigaton‐scale ocean alkalinity enhancement, a promising marine carbon dioxide removal method.more » « less
-
Abstract The Southern Ocean regulates atmospheric CO2and Earth's climate as a critical region for air‐sea gas exchange, delicately poised between being a CO2source and sink. Here, we estimate how long a water mass has remained isolated from the atmosphere and utilize14C/12C ratios (Δ14C) to trace the pathway and escape route of carbon sequestered in the deep ocean through the mixed layer to the atmosphere. The position of our core at the northern margin of the Southern Indian Ocean, tracks latitudinal shifts of the Southern Ocean frontal zones across the deglaciation. Our results suggest an expanded glacial Antarctic region trapped CO2, whereas deglacial expansion of the subantarctic permitted ventilation of the trapped CO2, contributing to a rapid atmospheric CO2rise. We identify frontal positions as a key factor balancing CO2outgassing versus sequestration in a region currently responsible for nearly half of global ocean CO2uptake.more » « less
-
null (Ed.)Although the Pacific Ocean is a major reservoir of heat and CO 2 , and thus an important component of the global climate system, its circulation under different climatic conditions is poorly understood. Here, we present evidence that during the Last Glacial Maximum (LGM), the North Pacific was better ventilated at intermediate depths and had surface waters with lower nutrients, higher salinity, and warmer temperatures compared to today. Modeling shows that this pattern is well explained by enhanced Pacific meridional overturning circulation (PMOC), which brings warm, salty, and nutrient-poor subtropical waters to high latitudes. Enhanced PMOC at the LGM would have lowered atmospheric CO 2 —in part through synergy with the Southern Ocean—and supported an equable regional climate, which may have aided human habitability in Beringia, and migration from Asia to North America.more » « less
An official website of the United States government
